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This paper is concerned with the theoretical behaviour of the boundary-layer flow over 
a disk rotating in otherwise still fluid. The flow is excited impulsively at a certain radius 
at time t = 0. This paper analyses the inviscid stability of the flow and the stability with 
viscous, Coriolis and streamline curvature effects included. In both cases, within a 
specific range of the parameter space, it is shown that the flow is absolutely unstable, i.e. 
disturbances grow in time at every fixed point in space. Outside this range, the flow is 
convectively unstable or stable. The absolute or convective nature of the instabilities 
is determined by examining the branch-point singularities of the dispersion relation. 
Absolute instability is found for Reynolds numbers above 5 10. Experimentally 
observed values for the onset of transition from laminar to turbulent flow have an 
average value of 513. It is suggested that absolute instability may cause the onset of 
transition to turbulent flow. The results from the inviscid analysis show that the 
absolute instability is not caused by Coriolis effects nor by streamline curvature effects. 
This indicates that this mechanism may be possible on swept wings, where Coriolis 
effects are not present but the boundary layers are otherwise similar. 

1. Introduction 
The present paper analyses the linear stability of the boundary-layer flow over a 

rotating disk. The boundary layer is similar to that over a swept wing; both boundary 
layers are three-dimensional with a laminar velocity component that is inflectional. 
Hence, both flows are susceptible to inviscid crossflow instability. The rotating-disk 
problem has the advantage that there is an exact similarity solution of the 
Navier-Stokes equations for the base flow, in which the shape of the laminar velocity 
profiles is independent of the radius. The boundary-layer thickness is also independent 
of the radius. 

It is usual in linear stability analysis to choose either temporal or spatial theories. 
Temporal theory assumes that the disturbances grow or decay with time from an initial 
spatial distribution. This implies that the wavenumber is real and that the frequency is 
complex. Spatial theory, however, assumes that the frequency is real and that the 
wavenumber is complex. Thus, the disturbances evolve in space from an initial temporal 
distribution. In order to determine which type of analysis to use, it is necessary to 
perform a spatio-temporal analysis. This is the approach taken here. 

As discussed by Huerre & Monkewitz (1990), the response of the flow to impulsive 
forcing shows whether it is convectively or absolutely unstable. If the response to the 
transient disturbance grows with time at a fixed location in space, then the flow is 
absolutely unstable. Following the work of Briggs (1964) and Bers (1975) in the field 
of plasma physics, absolute instability can be identified by singularities in the 
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dispersion relationship that occur when modes associated with waves propagating in 
opposite directions coalesce. Such points have become known as pinch-points. It is 
known that variation of a parameter, such as the Reynolds number, can cause such 
points to occur and thus change the behaviour of a flow from a convectively unstable 
regime to an absolutely unstable regime. Examples of such a change in behaviour are 
given by Betchov & Criminale (1966) and Koch (1985) for near-wake flows, Brazier- 
Smith & Scott (1984) for flows over compliant surfaces, Huerre & Monkewitz (1985) 
for mixing layers with backflow and Niew (1993) for separation bubbles behind 
backward-facing steps. 

It has been suggested (M. Gaster 1992, personal communication) that the rotating- 
disk boundary layer may also become absolutely unstable. First, the laminar velocity 
profiles for the rotating-disk boundary layer resolved in directions between the radial 
and circumferential directions have regions of reverse flow and are similar to those 
studied by Gaster (1963) and Niew (1993). Reverse mean flow is often thought to be 
related to absolute instability, since it provides a mechanism for upstream effects. 
However, as discussed by Huerre & Monkewitz (1990), the wake behind a cylinder that 
is half immersed in a fluid moving with constant velocity (Triantafyllou & Dimas 1989) 
has reverse mean flow but is convectively unstable at low Froude numbers. The flow 
only becomes absolutely unstable in the limit of infinite Froude number. Niew (1993) 
performed stability calculations on a family of velocity profiles that had varying 
degrees of reverse flow. He found that the profiles are only absolutely unstable if the 
region of reverse flow is sufficiently large. Hence, reverse flow is not sufficient for 
absolute instability but it is present in several absolutely unstable cases. 

Secondly, the onset of transition is very repeatable. The visualization experiments 
performed by Gregory, Stuart & Walker (1955) on the rotating disk showed a region 
of laminar flow at the centre of the disk followed, at larger radii, by spiral vortices that 
are stationary with respect to the disk and are caused by roughnesses fixed to the disk. 
These stationary vortices are now a well-known feature of the flow. At larger radii still, 
the flow undergoes transition and becomes fully turbulent. Malik, Wilkinson & Orszag 
(1981) tabulates locations for the onset of transition, as found by various 
experimentalists, see 9.5. The values show a scatter of less than 3 % around an average 
Reynolds number of 513, despite various methods of investigation. These results 
contrast with the onset of transition of the boundary-layer flow on, say, a flat plate, 
where the onset is sudden but the location is highly dependent on the disturbance 
environment. This contrast reinforced the idea that a well-defined location of absolute 
instability of the rotating-disk boundary layer may be triggering the nonlinear 
behaviour characteristic of the onset of transition. Incidently, there is no reason to 
associate stationary vortices with absolute instability unless they are growing in time 
at a fixed point in space. 

If there are large roughness elements on the surface of the disk, then the stationary 
vortices may grow sufficiently to significantly distort the mean velocity profiles, causing 
secondary instabilities (Kobayashi, Kohama & Takamadate 1980; Kohama 1984, 
1987). However, it is assumed in this paper that the wall roughness and the free-stream- 
turbulence level are both sufficiently small for the transition process to be controlled 
by the stability of the mean velocity profiles rather than secondary instabilities. 
Travelling waves (with non-zero frequency) will be considered as well as the usual 
stationary waves. 

The analyses presented in this paper use the parallel-flow approximation (see $3 2 and 
3) and, therefore, are restricted to the local stability characteristics of the flow. 
However, as discussed by Huerre & Monkewitz (1990), a region of local absolute 
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instability may give rise to a self-excited global mode. Generally, it is only the nonlinear 
results of a global instability that are observable. For example, the limit-cycle 
oscillations behind a cylinder (the von Karman vortex street) have been shown to be 
the result of a global instability (Mathis, Provansal & Boyer 1984). In the case of the 
rotating-disk boundary layer, it will be shown that the boundary layer becomes locally 
absolutely unstable above a certain Reynolds number and it is suggested that this 
results in a global instability and therefore nonlinear behaviour. The close agreement 
between the onset of absolute instability and the onset of transition observed in 
experiments ($ 5 )  suggests that, in this case, the nonlinearity further destabilizes the 
boundary layer and promotes transition to turbulence. Experimental results from a 
study of the behaviour of the rotating-disk boundary layer, which specifically 
investigates the possibility of an absolute instability and its effects, will be presented at 
a later date. 

In $2 there is a description of the problem and in 9 3  there is a brief comparison 
between experimental observations and theoretical results from various analyses. An 
inviscid linear stability analysis is presented in $4 and in 9 5  the effects of viscosity, 
Coriolis and streamline curvature are considered. The conclusions are given in $6. 

2. Formulation of the problem 
The disk is modelled as an infinite planar disk rotating at a constant angular 

frequency, O*, about the vertical axis, z*, which passes through the centre of the disk 
(asterisks indicate dimensional quantities). The radial and circumferential coordinates 
are r* and 0, respectively. The mean flow relative to the disk is given by von Karman's 
(1 92 1) exact similarity solution to the Navier-Stokes equations. The dimensionless 
similarity variables of the solution are defined by 

where U, V,  W are the non-dimensional radial, circumferential and axial base flow 
velocities, respectively, P is the pressure, p* and v* are the density and kinematic 
viscosity, and z = z*/L* is the non-dimensional axial coordinate, where 
L* = (v*/Q*)lI2 is the non-dimensionalizing lengthscale. 

A double-precision fourth-order Runge-Kutta integrator and a Newton-Raphson 
searching method were used to solve the set of ordinary differential equations 
(Schlichting 1968) for U,  V, Wand P. Figure 1 (a) shows U, V and W plotted against 
z.  The radial velocity profile is inflectional. In directions close to the radial direction the 
velocity profiles are also inflectional and have regions of reverse flow. The direction is 
defined in terms of the angle E measured positively from the radial direction in the 
direction of rotation. The resolved velocity Q(z), where 

Q(z) = U(z) cos e + V(z) sin c, (2) 

is plotted in figure 1 (b) for e = 90", 45", 30", 25", 20°, 15", lo", 5", 0", i.e. ranging from 
V(z) to U(z) from left to right. 

The stability analysis, applied at a radius r:, then involves imposing infinitesimally 
small disturbances on the mean flow. The local Reynolds number is 

R = r,*SZ*L*/v* = r,*/L* = ra, 

and the non-dimensionalizing velocity, pressure and time scales are rf Q*, p*r f2  Q*' 
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FIGURE 2. Neutral (wi = 0, cci = 0) stability diagrams, for stationary modes, calculated from the full 
sixth-order equations (-) and the fourth-order Orr-Sommerfeld equation (- - - -). The relation 
8 = 0.262 (cf. Gregory et al. 1955) (-.-.-) is compared with branch 1. Branches 1 and 2 are marked 
with their respective numbers. 
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and L*/(Q*r;), respectively. The instantaneous non-dimensional velocities and 
pressure are given by 

( 3 )  ~ ( r ,  8, t ,  Z )  = - U(Z) + u(r, 8, t ,  z ) ,  
r 
R 

1 
R 

W ( r ,  8, t ,  z )  = - W(z) + w(r, 8, t ,  z ) ,  

where u, v, w and p are small perturbation quantities. 
The dimensionless Navier-Stokes equations are linearized with respect to the 

perturbation quantities. In order to make the linearized perturbation equations 
separable in I ,  0 and t ,  it is necessary to ignore variations in the Reynolds number with 
radius. This involves replacing the variable I ,  which appears in coefficients of the 
linearized equations, by R. Despite the fact that the rotating-disk boundary-layer 
thickness is constant, this sort of approximation is usually called the parallel-Jow 
approximation. The terminology comes from analyses of growing boundary layers, 
such as the Blasius boundary layer, where variations in Reynolds number in the 
streamwise direction, due to growth of the boundary layer, are often ignored. 

Terms O(RP2) are neglected and the perturbation quantities are assumed to have 
normal-mode form 

} (7) 
21 = $(z; a, w ;  p, R) ei(ar+l*-wt) , = d(z; a , ~ ;  p, R) ei(ar+/js-wt) 

w = $(z;  a, w ;  p, R) ei(ar+P@-wt) , p = @(z;  a, w ; p, R )  ei(ar+fls-ut), 

where Zi, d and R are the spectral representations of the perturbation velocities and I; 
is the spectral representation of the perturbation pressure, w is the frequency of the 
disturbance in the rotating frame, p is the prescribed integer circumferential 
wavenumber and a is the radial wavenumber. To distinguish between convectively and 
absolutely unstable time-asymptotic responses, the initial boundary-value perturbation 
is provided by an impulsive circumferential line forcing, 6(r - rs )  6(t) eiPB, where 6(r - rs) 
and 6(t) are the Dirac delta functions at a non-dimensional radius of rs and at t = 0, 
respectively. The response to point forcing can be obtained by summing over all values 

The perturbation equations may be written as a set of six first-order ordinary 

(8) 

of p. 

differential equations in the following transformed variables : 

z l ( z ;  01, w ; $, R) = (a - i/R) Zi + Bfi, 
z2(z;a,u;$,R) = (a-ii/R)Dzi+PDd, 

z3(z;  a,  w ; p ,  R) = $, 

z&; 4 w ; $7 R) = A 
z , ( z ; a , w ; p ,  R) = (a-i/R)G-@, 

z e ( z ; a , w ; $ , R )  = (cz-ii/R)DG-PDzi, 
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where p = ,4/R and D represents differentiation with respect to z. These equations are 

Dz, = z2,  (14) 
1 wz [%I = ([a' +p"], + iR(aU+ PV- w )  + 4) z1 + [y] 

V S 

(1 5)  
W c +  w, + (( 01 - [;I,) D U +  $D V )  z3 + i( a' +p - [3,) z4 - R '  

D ~ ,  = [+I, iWz - [%] --([a2 1 + PIv + iR(aU+ p V -  w )  + q) z3, 
V R  

D = z6, 
25 

1 + - ([az + PIv + iR(aU+pV-w) + U,) z5 + [T] , 
R S 

where the subscripts v, c and s indicate which of the O(R-l) terms are the viscous, 
Coriolis and streamline curvature terms, respectively. 

If the Coriolis and streamline curvature effects are neglected, the result can be 
written as the fourth-order Orr-Sommerfeld equation for the rotating disk 

[i(D2--y2)'+R(aU+~V-w)(D2-y2)-R(aD2 U+BD2 V ) ] z ,  = 0, (20) 

where y2 = a2 +p". If all terms of O(R-l) are also neglected and viscosity is considered 
to act only in the establishment of the mean flow, equation (20) reduces to the Rayleigh 
equation 

[ ( ~ U + / W - W ) ( D ' - ~ ~ ) - ( C I . D ~ U + ~ D ~  V ) ] Z ,  = 0. (21) 

3. Comparison between various analyses and experiment 
As stated by Spalart (1990), to apply the parallel-flow approximation over a range 

of radii implies that the equations are not consistent to O(R-l), the same order as the 
viscous, curvature and Coriolis terms. Therefore, whether using the sixth-order 
perturbation equations (14)-( 19) or the standard Orr-Sommerfeld equation (20), the 
solutions cannot be justified rigorously at finite Reynolds numbers. However, purely 
inviscid analyses are rigorous and consistent asymptotic theories can be constructed to 
account for higher-order terms (Hall 1986; MacKerrell 1987; Bassom & Hall 1990). 
The following section compares experimental observations with results from inviscid, 
asymptotic and parallel-flow approximation analyses. 

Previous work on the rotation-disk problem has concentrated on the stationary 
vortex lines, observed in the laminar region prior to transition. There is only a limited 
number of papers concerning travelling modes (e.g. Bassom & Gajjar 1988; Faller 
1991 ; Bassom & Hall 1991). Therefore, to draw comparisons between various analyses 
and experimental results, it is necessary to concentrate on studies of the stationary 
modes in the convectively unstable region. 

Figure 2 shows neutral stability curves for stationary modes, i.e. a, = /Iz = oz = 0 
and o), = 0 (henceforth, subscripts i and r refer to imaginary and real parts, 
respectively). The convectively unstable region lies inside the curves. The solid lines 
were calculated using the viscous sixth-order perturbation equations (14)-( 19) and the 



Absolute instability of the boundary layer on a rotating disk 23 

broken lines were calculated using the Orr-Sommerfeld equation (20), in which the 
Coriolis and streamline curvature terms have been neglected. A double-precision fixed- 
step-size, fourth-order Runge-Kutta integrator was used with Gram-Schmidt 
orthonormalization and a Newton-Raphson linear search procedure. The wave angle 
in degrees is given by E = tan-l(P/cL,) and is measured from the outward radial 
direction in the direction of rotation. The wavenumber resolved in the direction of E is 
given by k = (a," + R)'''. 

Figure 2 shows that the critical Reynolds number for convective instability is 
significantly lower, about 180, when using the Orr-Sommerfeld equation. This value is 
consistent with that calculated by Brown (1959) and Cebeci & Stewartson (1980). 
However, the sixth-order equations give a value of about 290 for the critical Reynolds 
number, which agrees well with the hot-wire measurements of Malik et al. (1981) and 
Kobayashi et al. (1980), who gave values of 294 and 297, respectively. The inclusion 
of Coriolis and streamline curvature terms has a stabilizing effect and brings the 
theoretical and experimental results into agreement. As R gets large the upper branch, 
henceforth known as branch 1, is shown tending towards the asymptotic neutral 
solution presented by Gregory et al. (1955), where k z 1.141 and e w 13.3'. The 
asymptotic analysis performed by Hall (1986) has shown that the lower branch, 
henceforth known as branch 2, has a triple-deck structure and is fixed by a balance 
between viscous and Coriolis forces. Therefore, the lower lobe of the solid curve 
(branch 2) in figure 2 does not appear when using the Orr-Sommerfeld equation, which 
neglects the Coriolis terms. In a purely inviscid analysis there is no asymptotic 
representation of branch 2. 

The value of the wave angle calculated in the inviscid limit by Gregory et al. (1955) 
is a fair approximation to the orientation of the stationary vortices observed in 
experiments. Hall's (1986) asymptotic analysis of branch 1 shows that this close 
agreement is due to the alternating signs of the higher-order corrections to the inviscid 
leading-order term. However, the wave angle along branch 2 (figure 2d) shows a 
greater dependence on R and the neglect of Coriolis and streamline curvature effects 
is significant, especially at low Reynolds numbers. 

The inviscid analysis by Gregory et al. (1955) showed that the neutral solution for 
w = 0 is given by 

,8 = 0.262. (22) 
This relationship is plotted in figure 2(a) .  At very high Reynolds numbers the 
agreement with the sixth-order equation results and the Orr-Sommerfeld results is 
good. It was thought that the value of /3 for w = 0 at Reynolds numbers relevant to 
experiments would be equal to the number of stationary vortices observed in 
experiments. However, Gregory et al. (1955) found that (22) gave about 113 vortices 
at R = 430, and (22) gives about 76 at the critical Reynolds number of about 290, quite 
different from the 28 to 32 seen in visualization experiments. The reason for this 
discrepancy is the neglect of viscosity, Coriolis and streamline curvature effects and 
also that the spiral vortices are not neutral but are growing spatially in the radial 
direction. Furthermore, the close agreement between the theoretical work by Mack 
(1985) (based on branch 1 and using a sixth-order viscous analysis with the parallel- 
flow approximation) and the experimental work by Wilkinson & Malik (1985) has 
shown that the stationary spiral vortices are the result of the superposition of the 
complete zero-frequency circumferential wavenumber spectrum and not any single 
mode. These investigations have shown that randomly distributed roughness elements 
on the surface of the disk produce individual wave patterns that merge and fill the 
circumference of the disk, forming the familiar stationary spiral pattern. 
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Branch 1 stationary vortices are usually observed in experiments. However, Federov 
et al. (1 976) observed a mode, using visualization techniques, that had a wave angle of 
about 20” and gave between 14 and 16 vortices around the disk. These experimental 
results represent one of very few observations of branch-2 vortices. The nonlinear 
asymptotic analysis by MacKerrell(1987) suggests that branch-2 vortices are dominant 
for large-amplitude disturbances but the normally observed branch- 1 vortices dominate 
for small-amplitude disturbances. This suggestion is supported by the theoretical and 
experimental work of Faller (1991). 

To summarize, the linear asymptotic results for branches 1 and 2 agree very well with 
the results obtained by Malik (1986) above Reynolds numbers of about 1Oj (Hall 1986, 
figures 2 and 3 ) .  Malik (1986) used the parallel-flow approximation and solved the 
sixth-order perturbation equations. Since the latter approach gives results that agree 
with the experimental results (e.g. the critical Reynolds number, the wave angle and 
number of stationary vortices, as discussed above), it seems reasonable to use this 
approach to study the stability of the flow at Reynolds numbers that are relevant to 
experiment. Therefore, this is the approach taken in $ 5 after a consistent inviscid 
analysis has been presented in $4. 

4. Inviscid analysis 

analysis. The homogeneous boundary conditions to equation (2 I )  are 
Equation (21) is the governing equation for the following inviscid linear stability 

z 3  = 0, 2 = 0, z3+o, z+m. (23) 

This defines an eigenvalue problem, since (23) can only be satisfied for certain values 
of a and w,  which give the dispersion relation. 

The Rayleigh equation (21) has a singularity at the critical layer, where 
aU(z,) +pV(z,)  - w = 0. The quantity (a’ +P)ll2 U(z) = aU(z) +pV(z) is complex when 
a is complex and ranges from 0 to - p a t  z = 0 and z+m, respectively. The Rayleigh 
equation (2 1) has amplified and damped solutions in complex-conjugates pairs. 
However, physically relevant solutions match onto the solutions of the viscous 
equations (14)-( 19) and (20) for large Reynolds number. Lin (1 945 a, b, c) showed that 
to get the appropriate solutions, the path of integration must pass under the singularity 
if DD(z,) > 0, or over the singularity if DU(z,) < 0. Following a method developed by 
Healey (1995), this condition was satisfied by calculating u(z)  and D2 U(z) for complex 
values of z. The eigenvalues were found using a double-precision fixed-step-size fourth- 
order Runge-Kutta integrator (using a path of integration that always passed on the 
correct side of the singularity) and a Newton-Raphson linear search procedure. The 
solutions at the outer boundary were found analytically from the asymptotic form of 
(21), assuming that all the perturbations decay exponentially as z +m. 

The term ‘spatial branch’ will be used to refer to a locus of solutions of the 
dispersion relation that lie in the a-plane and are given by a predetermined 
o-distribution. These branches are not necessarily purely spatial since w may be complex. 
This terminology will be used throughout the paper. Similarly, a branch of the 
dispersion relation that lies in the o-plane and is given by a predetermined 
a-distribution, which may be complex, will be referred to as a ‘temporal branch’. 

The Briggs (1964) criterion has been applied, with fixed p, to distinguish between 
convectively and absolutely unstable time-asymptotic responses to the initial boundary- 
value perturbation, 6(r - r,) &(t) eiprsH. The criterion for absolute instability requires a 
branch-point singularity between two, or more, spatial branches of the dispersion 
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relation, of which at least two must lie in distinct half a-planes when wi is sufficiently 
large and positive. Such a singularity has become known as a pinch-point. If wi > 0 at 
the pinch-point the flow is absolutely unstable, otherwise the flow is only convectively 
unstable or stable. The radial group velocity aw/aa is identically zero at the pinch- 
point. A branch-point singularity between two spatial branches that lie in the same half 
a-plane for large positive values of wi does not cause absolute instability. Henceforth, 
the value of w at a pinch-point will be denoted by wo and a(wo) = a". 

These ideas have been applied to different systems and are discussed extensively by 
Brazier-Smith & Scott (1984), Huerre & Monkewitz (1990) and Chomaz, Huerre & 
Redekopp (1991), among others. 

Discussion and results of the inviscid analysis 

Two spatial branches have been found that originate in the distinct half a-planes. It will 
be shown in 5 5 that they match onto two viscous branches at large Reynolds numbers. 
For p = 0.126, figure 3 shows the two spatial branches, in the a-plane, as w traces a 
horizontal line in the w-plane. Figures 3 (a), 3 (b), 3 (c) show the spatial branches for 
wi = 0.0400, wi = 0.0150 and wi = w: M 0.0133, respectively. There is a pinch-point at 
w = wo M -0.0262+i0.0133 and a = uo M 0.266-iO.0670, as shown in figure 3(c), 
where the flow is absolutely unstable. This discovery and the results from the following 
viscous analysis, described in 5 5 ,  suggest that it may be absolute instability that triggers 
the onset of transition. 

As pvaries, w0 moves in the complex w-plane and a' moves in the complex a-plane; 
these relationships are shown in figures 4(a) and 4(b). Figure 4(c) shows the variation 
of the wave angle 8 = tan-l@/a,O> (in degrees) with F. The @:-curves of figure 4(a) cross 
the real axis at p M 0.265 where w,O M -0.0698, OLO M 0.338-iO.0582 and e M 38.1'. 
These points are the upper limits of the region of absolute instability. 
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point a," (-) and a; (----) as ,4 varies. (c)  Variation in c: plotted against $. The dotted line marks the 
upper limit of the absolutely unstable region. 

5.  Viscous analysis 
In this analysis, equations (14)-(19) are used as the governing perturbation 

equations. This means that viscous, Coriolis and streamline curvature effects are 
included. The eigenvalues, a and w, for fixed R and p were found using a double- 
precision fixed-step-size fourth-order Runge-Kutta integrator, Gram-Schmidt ortho- 
normalization and a Newton-Raphson linear search procedure. Eigenvalues from the 
code were compared with those calculated by L. M. Mack (1993, personal com- 
munication) and found to agree. The Briggs (1964) criterion, which is summarized in 
$4, has been applied, with fixed p and R, to distinguish between convectively 
and absolutely unstable time-asymptotic responses to the initial boundary-value 
perturbation, S(r - r,) &(t) eipe. 

Discussion and results of the viscous analysis 
The branches labelled 1 and 2 on the neutral stability curves in figure 2 and discussed 
in $ 3 are the w = 0 subset of two families of solutions to the dispersion relation. In the 
following discussion, branches of these two families that relate to travelling waves will 
also be called branches 1 and 2. Both branches originate in the upper half a-plane when 
wi is large and positive and branch-point singularities have been found between the 
two. Figure 5 shows branches 1 and 2, in the a-plane, as w, traverses a horizontal line 
in the w-plane at R = 515 and /3 = 6, @ M  0.0117). Figure 5(a), 5(b), 5(c) show the 
spatial branches when w2 = 0.01, 0.004 and 0.0005, respectively. For these particular 
values of R and /3, the branch-point between the two branches happens to occur 
when wi M 0, see figure 5(d) .  At the branch-point, where o M O.O243+iO and 
a M 0.214-iO.00701, dw/aa is zero. However, because both branches originate in the 
upper half a-plane at large positive wi ,  the branch-point does not constitute an 
absolute instability. 
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FIGURE 5. The progression of two spatial branches, branches 1 and 2 for R = 515 and /3 = 6 
@ 0.01 17), in the a-plane, given by horizontal lines in the w-plane: (a)  o, = 0.01, (b) ( L ) ~  = 0.004, (c )  
W ,  = 0.0005, (d) W ,  = wp z 0. The branch-point is marked by a cross ( x ). The arrows on the spatial 
branches indicate the direction of increasing w,. 

mi 0 

Two coalescing spatial branches that originate in the same half a-plane create a 
second-order pole. For such a case, there is a period of algebraic growth, which may 
be important if the second-order pole is near neutral, but ultimately the behaviour will 
be exponential and dictated by the sign of ui. This case will not be pursued here but 
has been studied by Koch (1986), Henningson (1991), Henningson, Johansson & 
Lundbladh (1990) and Henningson, Lundbladh & Johansson (1993). 

Neutral stability curves are shown in figure 6 for various real frequencies. Figure 
6(b) is equivalent to figure 2. The region enclosed by these curves is convectively 
unstable. The two lobes, observed at positive frequencies, correspond to branches 1 
and 2 and the cusps between the two lobes mark the neutral branch-points. As 
discussed above, these branch-points do not cause absolute instability; however, the 
curves do show the relative effect of non-zero frequency on the two spatial branches. 
Positive frequency causes the critical Reynolds number for the onset of convective 
instability of branch 2 to decrease and that of branch 1 to increase. Negative frequency 
has the opposite effect : small negative frequencies cause branch 2 to become damped. 
The sign of the real frequency affects the sign of the phase velocity [0,/(01,2 +$)''']], i.e. 
negative real frequency implies an inward phase velocity. Additionally, the wave angle 
becomes negative as the frequencies become more positive. The behaviour of branch 
2 at increasingly positive frequency shows that branch 2 is the type-2 instability 
described by Faller (1991). The type-2 instability, or branch 2, is characterized by a 
substantially lower critical Reynolds number (Faller 1991 gives a critical value of 69.4 
where the wave angle is - 19.0°), and the radial growth rates are much lower than those 
of branch 1. Figure 6 in the paper by Faller (1991) shows convective neutral stability 

F (4 
L r 
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FIGURE 6. Neutral (q = 0, 01, = 0) stability diagrams for families 1 and 2: (a) W ,  = -0.0080, (b) 
wL = 0, (c)  W, = 0.0080, ( d )  W, = 0.024, (e)  W ,  = 0.080, In each case, the neutral curve is shown in the 
(/3, R)-, (ar, R)- and ( E ,  R)-planes. Branches 1 and 2 are marked with their respective numbers in (b) ,  
and 6; is in degrees. 

curves non-zero frequency. The figure condenses the information shown here in figure 
6, giving one plot in which o, varies. It is worth noting that the type-2 instability is 
analogous to an instability mode found experimentally and theoretically in the Ekman 
layer, which has been documented by Lilly (1966), Faller & Kaylor (1966) and Tatro 
& Mollo-Christensen (1967). 

The results discussed so far are consistent with the fact that Mack’s (1985) calculated 
wave patterns, based on branch 1, show a convective nature and match the 
experimentally observed convective region of the flow. It is generally thought that the 
onset of transition, which is observed experimentally at Reynolds numbers (as 
tabulated by Malik et al. 1981) of about 500 (Kobayashi et al. 1980), 505 (Gregory & 
Walker 1960), 510 (Chin & Litt 1972) and 513-526 (Malik et al. 1981), is caused by the 
radial convective growth of disturbances to amplitudes large enough to cause 
nonlinearities, perhaps via a secondary instability. A certain amount of variation in the 
reported transition Reynolds numbers is due to different methods of determination. 
However, we offer a quite different explanation for transition. Mack (1985) mentions 
briefly a third spatial branch. Here too, a third branch is found that has the same 
characteristics as Mack’s (1985) branch. It resides in the lower half a-plane for large 
positive wi and therefore corresponds to a response in the region r < rs; it has relatively 
large negative values of a, and so is heavily damped. Here, pinch-points between this 
branch, henceforth called branch 3, and branch 1 have been found. At large positive 
wi these branches lie in the distinct halves of the a-plane and, for certain values of p, 
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FIGURE 9. (a) Viscous temporal branch in the w-plane (given by the A-line)-and viscous spatial 
branches 1 and 2 in the a-plane (given by the F-line), for R = 515 and p = 6 (p z 0.01 17), showing 
the branch-point. (b)  Viscous temporal branch in the w-plane and viscous spatial branches 1 and 3 
in the a-plane, for R = 530 and B = 67 (p z 0.126), showing the pinch-point. (c) Inviscid temporal 
branch in the w-plane and inviscid spatial branches 1 and 3 in the cc-plane, for = 0.126, showing the 
pinch-point. 

above a critical Reynolds number of 510.625, w i  at the pinch-point is positive. These 
points correspond to absolute instabilities. Such an example is shown in figure 7, in 
which branches 1 and 3 are shown in the a-plane, at R = 530 and /3 = 67 @ w 0.126). 
Figures 7(a) and 7(b)  show the branches when wi = 0.0100 and 0.00400, respectively. 
Figure 7(c )  shows the pinch-point at wo z -0.0311 +i0.000289 and a' z 
0.213-iO.123, where the wave angle 6 FZ 30.7'. Below R = 510.625, wd can be reduced 
to zero before pinching occurs and the flow is then only convectively unstable. Note the 
similarity between the viscous results in figure 7 and the inviscid results in figure 3 .  

Figure 8 shows the neutral stability curves for absolute instability in the (R,&, 
(R, a;)-, (R ,  a,")- and (R, ai)-planes. Inside the stability curves w: is positive and outside 
it is negative. The absolutely unstable region lies within the curves and the parameter 
region over which the flow is absolutely unstable is shown to expand at Reynolds 
numbers above the critical value. The maximum magnitude of wi also increases with 
increasing R. Since branch 1 moves into the lower half a-plane to meet branch 3 at the 
pinch-points, the region of absolute instability must lie within the region of convective 
instability for branch 1. 

The structure of a normal branch-point compared with a pinch-point is shown 
graphically in figures 9(a) and 9(b). Figure 9 also shows a comparison between an 
absolutely unstable pinch-point (@ > 0) from the viscous analysis (figure 9 b) and from 
the inviscid analysis (figure 9c); the value of pis 0.126 in both cases. Figure 9(a)  shows 
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the same case as figure 5(4, figure 9(b)  is the same case as figure 7(c) and figure 9(c) 
is the same case as figure 3 (c). The temporal branch given by the values of CL along the 
line marked A in figure 9 is denoted by @(aA). Similarly, the spatial branches given by 
the values of w along the line marked Fare denoted by a(wF). When w(aJ is plotted 
in the complex w-plane, both the viscous and the inviscid pinch-points show a 
characteristic cusp at of (figure 9b,  c). This characteristic has been used by Kupfer, 
Bers & Ram (1987) to locate points of absolute instability. Apart from the magnitude 
of up, the parameter values at the inviscid and viscous pinch-points are very similar. 
Indeed, since wp increases with increasing Reynolds number, the viscous results will 
approach the inviscid results at large Reynolds number. This agreement between figure 
9(b)  and 9(c)  confirms that the two inviscid spatial branches are the asymptotic limits 
of branches 1 and 3 at infinite Reynolds number. Since branch 2 does not appear in 
inviscid analyses (see § 3 ) ,  there are no inviscid branch-points of the type shown in 
figure 5 (d) and 9 (a), where the two spatial branches originate in the same half-plane 
at large wi. 

6. Conclusions 
The disturbances on a rotating disk have been investigated using linear stability 

theory. The general convective nature of much of the flow is already known, but this 
investigation has focused on the possibility of an absolute instability occurring in some 
parameter range. Given sufficient time, even a weakly absolutely unstable flow will 
cause a disturbance at a fixed point in space to grow to amplitudes large enough to 
make the use of linear theory invalid. In contrast, a disturbance in a convectively 
unstable flow is swept away as it grows, and the source area is ultimately left 
undisturbed, and so the boundary layer remains basically laminar until the instability 
wave has travelled far enough away to have grown to amplitudes sufficient to cause 
nonlinearities. Hence, absolute instability is quite distinct from spatial instability and 
is far more dangerous. Furthermore, the presence of an absolute instability would 
imply that any asymptotic stability analysis should be temporal as well as spatial. 

Firstly, all terms of O(R-l) were neglected, giving a consistent set of linearized 
perturbation equations, i.e. the three-dimensional Rayleigh equation. The boundary 
layer was found to be radially absolutely unstable over a range of p. Secondly, a linear 
stability analysis has been performed on the sixth-order perturbation equations that 
include viscous, Coriolis and streamline curvature effects. A third damped branch of 
the dispersion relation has been shown to meet branch 1 at pinch-points with positive 
w6. These points indicate radial absolute instability for R > 510.625 and suitable /3. 
Below the critical Reynolds number, the flow is convectively unstable or stable 
depending on the parameter values. Neutral stability curves are presented that show 
the absolutely unstable, convectively unstable and stable regions. 

It is known that inviscid crossflow instability destabilizes boundary layers. Hence, 
the transition mechanism for the rotating-disk boundary layer could be expected to be 
inviscid. Therefore, it is encouraging that the results presented in 94 show that the 
absolute instability is an inviscid mechanism. Furthermore, the onset of absolute 
instability is consistent with experimental observations of the critical Reynolds number 
for the onset of transition (513 f 3 %, cf. $5). Although the parallel-flow approximation 
in the viscous analysis will have some small numerical effect on the stability 
calculations, the general absolute instability characteristics discussed in this paper are 
still relevant to the physical behaviour of the flow. Therefore, absolute instability may 
be a better explanation for transition than the convective radial growth of disturbances, 
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leading to nonlinearity. Moreover, this mechanism may be relevant to transition on 
highly swept wings. 
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